局部座屈が生じた円形断面鋼製橋脚の修復方法に関する研究

A study on repair method of circular steel bridge pier which have local buckling

嶋口儀之*, 鈴木森晶**, 太田樹***, 青木徹彦**** Yoshiyuki Shimaguchi, Moriaki Suzuki, Tatsuki Ota, Tetsuhiko Aoki

*修(工),愛知工業大学大学院,研究生(〒470-0392豊田市八草町八千草 1247) **博(工),愛知工業大学准教授,工学部都市環境学科土木工学専攻(〒470-0392豊田市八草町八千草 1247) ***愛知工業大学大学院,建設システム工学専攻(〒470-0392豊田市八草町八千草 1247) ****工博,愛知工業大学教授,工学部都市環境学科土木工学専攻(〒470-0392豊田市八草町八千草 1247)

> After Hyogoken-Nanbu Earthquake in 1995, many studies about seismic resistance of steel bridge piers have been conducted. However, the most of those studies are only for new steel bridge piers or existing steel bridge piers which have not experienced earthquakes. Although small damages caused by earthquakes are allowed of the current design code, no method exist for repairing the damaged steel bridge pier.

> In this study, we propose three types of repair methods for steel bridge piers which have local damage by earthquake. We prepared sixteen circular steel bridge pier specimens which have local buckling in the bottom of pier by previous cyclic loading experiments. After repairing them, perform cyclic loading experiments under the same load sequence as previous experiments, and evaluate seismic resistance performance of the repaired steel bridge pier.

Key Words: steel bridge pier, seismic resistance capacity, repair キーワード: 鋼製橋脚, 耐震性能, 修復

1. 序論

鋼製橋脚は市街地の高架道路や鉄道などの重要 度の高い公共構造物に多用されている.これらの構 造物は一般に直列リンク構造であることが多く,極 大地震により一部の橋脚が損傷を受け機能を失っ ただけでも,構造物全体の機能損失につながる.ま た,通常このような構造物の復旧には莫大な費用と 時間が必要となる.このことから,損傷した橋脚の 早期復旧は,震災後の人命救助,都市機能の回復の ため極めて重要である.

1995年に発生した兵庫県南部地震では、それま での設計震度を上回る地震力により、鋼製橋脚を含 む多くの土木構造物が被害を受けた.都市における ライフラインである主要幹線道路が長期間使用不 能になり、救助および災害復旧活動の妨げとなった. また、地震後の橋脚の復旧作業では、修復方法に関 する指針が無く、比較的軽微な損傷であっても部分 的な修復では復旧できず、撤去後に再構築した場合 が少なくなかった.そのため、阪神高速道路神戸線 では全線開通までに1年9ヶ月を要した^{1,2)}.

以降,鋼製橋脚の耐震性能に関する研究が精力的 に行われてきており,耐震設計基準に反映されてき た³⁾.しかし、これまでの研究の多くは地震による 損傷の無い既存橋脚および新設橋脚についてのも のである 4)~7). また,現在の耐震設計では,地震に よる橋脚の損傷を許容し,修復性についても言及し ているにもかかわらず,損傷した橋脚の修復と修復 後の耐震性能に関する研究は極めて少なく,損傷し た橋脚の残存保有耐力に関する研究も同様に少な い 8)~11). そのため, 損傷した橋脚の修復方法につい ての検討が必要である.その理由として、例えば、 現行の設計基準(道路橋示方書のレベル2地震)を満 足するような橋脚が損傷した後,損傷前と比較して 過剰な補強となるような修復が行われるケースも 考えられる.このように損傷前よりも耐力が著しく 増加するような修復を行った後,再度本震と同等の 余震などに見舞われた場合,基礎工の損傷など予期 せぬ被害につながる恐れがあり,望ましくないと考 えられる.

そこで本研究では,基部に局部座屈が生じた円形 断面鋼製橋脚を対象として,震災後の早期復旧が可

能な修復方法を提案する. なお, 今回行う修復は本 格的な復興対策がとられるまでの一時的な応急復 旧を想定しているが, 修復後の耐力が損傷前と同等 となるような修復方法を提案し, 可能であれば耐用 年数内の継続利用ができるような修復を目指す. 具 体的には, 過去に行った静的繰り返し載荷実験によ り損傷した円形断面鋼製橋脚に対し 3 種類の修復 を行う. その後, 修復前と同様の載荷実験を行い, 修復後の耐震性能を実験的に明らかにし修復方法 の評価を行う. また, 簡易的な地震応答解析を行う ことで, 修復によりどの程度の性能まで回復させる ことが望ましいか検討する.

2. 実験計画

2.1 実験供試体

本研究では,過去に行われた繰り返し載荷実験に より基部に提灯座屈が生じた円形断面鋼製橋脚供 試体を16体使用した¹²⁾.新品時の供試体諸元を表 -1に示す.表中の降伏応力およびヤング率は材料 の引張試験結果である.文献12)と本研究の供試体 名の対応については付録に示す.

本研究で用いた供試体は、橋脚全体に大きな残留 変位が生じるような致命的な損傷は無いが、局部座 屈が生じ、耐力や剛性が低下しており、そのままで は継続使用が困難と判断されるような場合を想定 している.言い換えると、道路橋示方書に示される 耐震性能3相当の損傷を想定する³⁾.

2.2 供試体損傷状況

一般に地震による鋼製橋脚の損傷は一律ではない.本研究では,座屈変形量および修復性の観点から,道路橋示方書とは別に損傷の程度を次のように 区別する.

1) 微損傷:最大水平荷重程度まで達していたと

しても肉眼で損傷を確認できない程度(耐震性 能1相当)

- 2) 中損傷:最大水平荷重を超え変形が肉眼で確 認できる程度(耐震性能2相当)
- 3) 大損傷:荷重が大きく低下し局部座屈が進行 したもの(耐震性能3相当)

本研究で使用した供試体は,過去の実験において 最大水平荷重を超え,降伏水平荷重程度に低下する まで載荷しており,全て大損傷に相当する.各供試 体の損傷状況には差異が見られたため,損傷状況を 把握するため,図-1 に示すように,最大座屈変形 量 B_b ,平均座屈発生高さ h_b ,座屈波形の頂部,上 部,下部の曲率半径 ρ_t , ρ_m , ρ_b を測定した.曲率半 径は座屈形状を型取りし,座屈波形の頂点およびそ の上下 10mm の位置の 3 点から算出した.その結 果,供試体の損傷は基部から $h_b=85\sim115$ mm 程度の 位置で $B_b=15\sim35$ mm 程度外側に膨らむ提灯座屈で あった.各供試体の損傷状況測定結果を表-2に示す.

また,使用した供試体は文献 12)に示すように圧 縮芯を用いて実験を行った物も含まれており,供試 体の保有剛性が荷重-変位履歴曲線から推測するこ とが困難であった.さらに,供試体は野外に保管さ れており,目立った断面欠損はないものの,錆など による耐力の変化が懸念された.そこで,修復前に 降伏水平変位 δ_yの 50%以内での繰り返し載荷を行 い,保有剛性 K を測定した.表-3 に保有剛性測定 結果および新品時初期剛性 K₀,剛性比 K/K₀を示す.

供試体 No.	1-1, 1-2	2-1, 2-2	3-1, 3-2	4-1, 4-2	5-1~5-8
鋼種		SS	400		STK400
直径 D (mm)		60	0.0		611.2
板厚 t (mm)	4.26	5.90	8.70	11.9	8.90
載荷点高さ h (mm)	2890				
供試体高さ h'(mm)			2600		
断面2次モーメント I(mm ⁴)	3.537×10 ⁸	4.859×10 ⁸	7.065×10 ⁸	9.509×10 ⁸	7.637×10 ⁸
降伏応力 σ _y (N/mm ²)	342	332	268	298	337
ヤング率 E(kN/mm ²)	211	204	210	201	197
径厚比パラメータ R _t	0.190	0.137	0.084	0.053	0.098
細長比パラメータ λ	0.351	0.354	0.339	0.316	0.358
降伏水平荷重 H _y (kN)	118.5	158.5	207.1	250.7	248.1
降伏水平変位 δ _y (mm)	12.5	12.9	11.7	10.1	13.3

表-1	新品	時供試体諸	元 12)
11-1	- 171 HH	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	14

 $\mathbf{94}$

以上の測定結果より,供試体の損傷状況と剛性の 関係を調べたところ,最も剛性と関連性が高いと思 われるのが曲率半径であった.よって,図-2 に曲 率半径と剛性比の関係を示す.これを見ると,曲率 半径と剛性比には一定の相関関係があると考えら れる.これより座屈の曲率半径から保有剛性を推定 し,修復方法決定のための資料とすることが可能で はないかと考えられる.ただし,本研究で使用した のは剛性比が 6 割程度の大損傷の供試体のみであ るため,比較的軽微な損傷については明らかになっ ておらず,今後データを補完する必要がある.

2.3 修復方法

本研究では震災後 72 時間以内の極短期間に修復 を完了することができる修復方法を検討する.その ため、材料の入手が容易であり、複雑な加工を必要 としないことが重要となる.また、損傷した橋脚に どの程度耐力が残っているかは不明であるため、損 傷の程度から橋脚の保有耐力を推定し、修復方法を 決定する必要がある.

修復方法を検討する上で重要となるパラメータ として,最大水平荷重,剛性,変形性能などの回復 率が挙げられる. 例えば, 修復部の強度が著しく増 加するような修復を行うと,修復部直上で座屈が生 じることが考えられる.このような修復を行った場 合,結果的に橋脚が短くなったことになるため,最 大水平荷重は増加するが,変形性能は低下する恐れ がある. さらに, 損傷前と比較して最大水平荷重が 増加することで,相対的に弱くなった支承部,フー チングおよびアンカーボルトなどの新たな箇所に 損傷が生じることも考えられる. そのため, 耐力を 回復させると同時に,破壊形態を変化させないよう な修復を行う必要がある、加えて、低下した剛性を 回復させることも重要である.修復による剛性の回 復が十分でない場合,応答変位が増加する可能性が あるだけでなく,固有周期が変化し,振動系全体と しての特性が変わることで予期せぬ被害につなが る恐れがある.

以上より本研究では,最大水平荷重および剛性が 損傷前の新品時と同等で,変形性能が同等以上とな り,かつ,修復前の座屈発生位置で再び破壊が進行 するような修復方法を目指す.すなわち損傷前の性 能に近付けることを目標として修復を行う.

2.3.1 コンクリート充填による修復(C Type)

この修復方法は橋脚内部にコンクリートを充填 し、基部の抵抗モーメントを増加させるとともに、 座屈が内側に進行するのを抑制することを目的と する.過去に筆者らが行った、損傷した矩形断面鋼 製橋脚に対するコンクリート充填修復では、コンク リートを充填するのみの容易な修復方法でありな

表-2 供試体損傷状況測定結果

No	供封休夕	座屈部寸法(mm)		曲率半径(mm)		
INO.	医矾净泊	h _b	B _b	ρ _t	ρ_m	ρ
1-1	C1.5D-T4.5A	100.3	14.5	30.0	23.8	43.7
1-2	C1.5D-T4.5B	116.3	16.0	18.7	19.7	23.9
2-1	C1.5D-T6.0A	98.8	17.0	31.6	18.7	19.6
2-2	C1.5D-T6.0B	89.1	30.0	17.5	13.9	20.5
5-1	C1.5D-T9.0	88.8	27.5	38.6	23.4	30.6
5-2	C1.0D-T9.0	94.4	23.0	36.1	29.7	42.4
5-3	C1.0D- T9.0D	92.5	21.0	42.4	34.1	31.6
5-4	C0.5D- T9.0	86.9	27.5	45.2	23.5	35.5
5-5	C0.5D- T9.0D	83.4	25.0	45.2	26.0	34.0
4-1	C1.5D-T12.0	116.6	20.0	70.1	34.1	43.7
4-2	C1.5D-T12.0	109.7	33.0	45.2	29.5	40.3
3-1	CY0.5D-600	116.3	19.5	53.5	29.5	43.7
3-2	CY0.5D-600	115.9	22.0	52.5	34.1	42.4
5-6	TH50-8	94.4	22.5	36.1	26.1	37.2
5-7	TH75-12	95.6	17.0	52.2	34.1	43.5
5-8	TH100-16	93.8	25.5	32.7	26.0	34.0

表-3 初期剛性および保有剛性

N- #+≥+/+-	/#+≥+/+-	保有剛性	初期剛性 12)	剛性比			
NO.		K(kN/mm)	K ₀ (kN/mm)	K/K ₀			
1-1	C1.5D-T4.5A	5.11	0 1 0	0.625			
1-2	C1.5D-T4.5B	3.71	8.18	0.454			
2-1	C1.5D-T6.0A	5.77	10.62	0.541			
2-2	C1.5D-T6.0B	4.45	10.62	0.419			
5-1	C1.5D-T9.0	9.40		0.587			
5-2	C1.0D-T9.0	10.66		0.666			
5-3	C1.0D- T9.0D	10.12	16.02	0.632			
5-4	C0.5D- T9.0	9.25		0.577			
5-5	C0.5D- T9.0D	9.64		0.602			
4-1	C1.5D-T12.0A	14.22	19.56	0.766			
4-2	C1.5D-T12.0B	10.91	18.50	0.588			
3-1	CY0.5D-600	10.34	15.09	0.699			
3-2	CY0.5D-600W	10.86	15.08	0.724			
5-6	TH50-8	8.96		0.574			
5-7	TH75-12	11.65	16.02	0.756			
5-8	TH100-16	10.10		0.626			

がら、本研究の目指す性能に近い結果が得られた⁹. また、無損傷の鋼管供試体に対する補強として、コ ンクリート充填高さの違い、ダイアフラムの有無を パラメータとして行った実験では、ダイアフラムを 設置した場合はダイアフラムが無い場合と比べ、最 大水平荷重、変形性能が大きく向上した.しかし、 コンクリート充填高さを基部から直径の1.5倍より 高くした場合では、耐震性能の有意な向上は見られ なかった¹³⁾.このことより本研究では、以下に述 べる3点に注目し修復を行う.表-4にコンクリー ト充填修復の供試体と修復方法および使用したコ ンクリートの圧縮強度の一覧を示す.なお、充填コ ンクリートの設計強度は24N/mm²である.

1)板厚および保有剛性の異なる供試体に対して 同様の修復を行いその効果を比較する. コンクリー ト充填高さは供試体外径 D の 1.5 倍の高さとする. 図 -3(a) に 修 復 方 法 概 要 を 示 す . 供 試 体 は 1-1(C1.5D-T4.5A), 1-2(C1.5D-T4.5B), 2-1(C1.5D-T6.0A), 2-2(C1.5D-T6.0B), 4-1(C1.5D-T12.0A), 4-2(C1.5D-T12.0B) を使用した.

2)コンクリート充填高さによる効果を比較する ために,充填高さが外径Dの1.5倍,1.0倍,0.5倍の 3 種の修復を行う.供試体は 5-1(C1.5D-T9.0), 5-2(C1.0D-T9.0), 5-4(C0.5D-T9.0)を使用した.

3)ジベルを設置することによる効果を検証する. 充填高さが 1.0D, 0.5D の 2 種とし, ジベルの有無 による比較を行う.供試体は 5-3(C1.5D-T9.0D), 5-5(C1.5D-T9.0D)を使用した. これは、コンクリー ト充填高さを低くした場合,鉛直方向の拘束力が低 下するため、コンクリートが抜けあがり、十分な効 果が得られないことが考えられる. そこで, コンク リートのずれを防止し,鉛直軸力を充填コンクリー トに伝達させることを目的として,供試体内部にジ ベルを設置する.ジベルは図-3(b)に示すようにコン クリートを充填する高さに設置し、コンクリートの 抜け上がりを拘束する.ジベルは施工を簡便にする ため,幅 50mm 程度のアングル材を全周に溶接す る. ただし, 既設の鋼製橋脚には溶接に適さない鋼 材を使用したものもある.そのためジベルの溶接を 行う場合は、溶接が可能な橋脚か事前に確認するこ とが必要である. 今回使用した鋼材は, 本来, 溶接 性が保障されたものではないが,事前に予備の供試 体を用いて、溶接性に問題がないことを確認した.

2.3.2 鋼板巻き立てによる修復(CY Type)

この修復方法は、座屈部の外側から鋼板を巻き、 隙間にコンクリートを充填することで座屈がさら に外側に進行するのを抑制することを目的とする. 表-5に供試体一覧を,図-4に修復方法概要を示す. なお、図中にコンクリートの圧縮強度を示す.過去 に鋼板の巻き立て高さを変えて修復を行った実験

表-4 コンクリート充填修復供試体一覧

No.	供試体名	板厚 (mm)	充填 高さ	ジベル	コンクリート 圧縮強度 (N/mm²)
1-1	C1.5D-T4.5A	1.26	1.5D		30.7
1-2	C1.5D-T4.5B	4.20	1.5D		34.0
2-1	C1.5D-T6.0A	5.00	1.5D		35.4
2-2	C1.5D-T6.0B	5.90	1.5D		26.3
5-1	C1.5D-T9.0		1.5D	_	26.3
5-2	C1.0D-T9.0		1.0D		28.1
5-3	C1.0D-T9.0D	8.90	1.0D	有り	26.8
5-4	C0.5D- T9.0		0.5D		27.6
5-5	C0.5D- T9.0D		0.5D	有り	28.5
4-1	C1.5D-T12.0A	11.0	1.5D		34.3
4-2	C1.5D-T12.0B	11.9	1.5D		27.2

表_5	綱板巻き	立て修復	供試休—	睯
1X-J	婀似合く	立て厚腹	医巴巴	見

では,外径の0.5 倍の高さで最も望ましい結果が得られた¹⁰⁾.ただし,この実験では巻き立て鋼板基部とベースプレートを溶接で固定する修復方法を用いており,実橋脚では同様の修復を行えない場合が考えられる.そのため本研究では,鋼板基部の溶接が無い場合でも十分な修復効果が得られるか検

-280-

証するため,溶接の有無で比較を行う.鋼板は断面 2 次モーメントが供試体本体と一致するよう板厚 6mm のものを使用し,供試体から 35mm 離して 0.5D の高さまで巻き立てる.また,巻き立て鋼板 の内側に 30×10×10 mmの鋼材をジベルとして溶接 することで,コンクリートの抜け上がりを防止する. 供試体は 3-1(CY0.5D-600), 3-2(CY0.5D-600W)を使 用した.

2.3.3 補剛材による修復 (TH Type)

この修復方法は,損傷による曲げ剛性の低下を断面が欠損したものとみなし,補剛材を溶接して欠損した断面を補うことで,曲げ剛性を回復させることを目的とする.また,同時に鉛直軸力を伝達する役割を持たせている.供試体は座屈部寸法 h_b および B_b が同程度の 5-6(TH50-8), 5-7(TH75-12),

5-8(TH100-16)を使用した.表-6に供試体と修復方 法の一覧および補剛材の降伏応力を,図-5に修復 方法概要図を示す.本研究で用いた補剛材は断面欠 損を補うことを目的としているため,通常の補剛材 とは異なり、まず平板を鋼管の内側に溶接し、それ にリブを溶接してT形断面とする.補剛材には, 入手しやすく,加工の手間が少ない型鋼の利用も考 えられる.ただし今回は補う断面積と一致する型鋼 が無かったことから、平板を使用した. 補剛材の高 さは基部から 0.5D の高さまでとする. また, 補剛 材によりどの程度の断面積を補う必要があるかは 明らかではないことから、今回は、補剛材の断面積 は供試体の断面積に対して 50%, 75%, 100%の3 種類を設定し、比較を行った.なお、ジベルの溶接 と同様,この修復方法を用いる場合は橋脚の溶接性 について事前に確認する必要がある.

					補岡	川材
NT		板厚	補剛材	補剛材の	降伏	応力
NO.	供码件名	(mm)	本数	断面積	(N/n	nm²)
					平板	リブ
5-6	TH50-8		8	50%		
5-7	TH75-12	8.90	12	75%	312	300
5-8	TH100-16		16	100%		

表-6 補剛材修復供試体一覧

2.4 実験方法

2.4.1 実験載荷装置

実験載荷装置を図-6 に示す.実験では載荷梁を 介して鉛直方向に設置した2基の4400kNアクチュ エータを用いて,上部工重量を想定した一定鉛直荷 重を載荷する.そして,水平に設置した1基の 4400kNアクチュエータを用いて,地震時の上部工 重量の慣性力を想定した水平繰り返し載荷を行う. アクチュエータの両端はピン構造になっており,供 試体の大変形にも対応できる.また,水平荷重は鉛 直方向アクチュエータの傾きによる水平成分を加 えて補正した値で評価している.

2.4.2 鉛直荷重および降伏水平荷重,変位の算定

一定鉛直荷重 P は有効座屈長の概念に基づき, 式(1)~式(3)に示す局部座屈を考慮しない「はり-柱」強度相関より算出し,小さいほうの値を鉛直荷 重として載荷した¹⁴⁾.なお,本研究では地盤種別 をII種と想定し,設計水平震度 $k_h \gtrsim 0.25$ とした³⁾.

$$\frac{\alpha P}{P_u} + \frac{C_m \alpha M}{M_v (1 - \alpha P/P_E)} \le 1.0 \tag{1}$$

$$\frac{\alpha P}{P_y} + \frac{\alpha M}{M_y} \le 1.0 \tag{2}$$

$$M = k_h P h \tag{3}$$

ここで、 α :安全率(=1.14), P_E :オイラーの座屈強 度、 P_y :降伏軸力、P:鉛直荷重、 P_u :道路橋示方 書に示される局部座屈の影響を考慮した中心軸圧 縮強度¹⁵⁾, C_m :等価モーメント修正係数(=0.85), M:柱基部の曲げモーメント、 M_y :降伏モーメン ト、 k_h :震度法に用いる設計水平震度(=0.25), h: 載荷点高さである.

降伏水平荷重 H_yは鉛直荷重の影響を考慮し,式 (4)より,繰り返し載荷の基本変位となる降伏水平 変位 δ_yは,弾性理論から式(5)より算出した.また,

実験では,基部の剛体変形を含んだ状態で繰り返し 載荷を行っているが,結果を整理する際は,剛体変 形を補正した値で評価している.

$$H_{y} = (\sigma_{y} - \frac{P}{A})\frac{z}{h}$$
(4)

$$\delta_{y} = \frac{H_{y}h^{3}}{3EI}$$
(5)

+4 δ_y +3 δ_y +2 δ_y +2 δ_y 日 -2 δ_y H -2 δ_y -3 δ_y -4 δ_y 図-7 載荷パターン

3. 実験結果

ここで, σ_y:降伏応力, A:断面積, z:断面係数, E:ヤング率表-1, I:断面2次モーメントである. 図-7 に載荷パターンの概要図を示す.降伏水平 変位 δ_yの整数倍の変位を±δ_y, ±2δ_y, ±3δ_y, ・・の ように順次振幅を増加させ,正負交番載荷を行った.

3.1 水平荷重-水平変位関係

実験から得られた各供試体の水平荷重-水平変位 履歴曲線の一部を図-8 に示す.縦軸を降伏水平荷 重 H_y,横軸を降伏水平変位δ_yで無次元化している. 図中の破線は新品時(ORG-),実線は修復後の供試

体の履歴を示している.

図-8 より、履歴曲線の形状から大きく3つのグ ループに分けることができる.1つ目は (c)C1.5D-T12.0A, (f)CY0.5D-600, (h)TH50-8 のよう に最大水平荷重以降も安定した大きな履歴を描く グループである.このグループは新品時と比較して 最大水平荷重が同程度まで回復し,かつ,高い変形 性能とエネルギー吸収量が得られた.2 つ目は (a)C1.5D-T4.5A, (b)C1.5D-T6.0B, (d)C1.0D-T9.0, (e)C1.0-T9.0D のようにピンチング挙動が見られた グループである.このグループは新品時より変形性 能は向上しているが,横に細長い履歴を描いており, エネルギー吸収量がやや小さくなっている.3つ目 は(g)CY0.5D-600W, (i)TH75-12 のように新品時と よく似た履歴を描くグル―プである.このグループ は最大水平荷重については新品時より増加したも のの,その後,急激な荷重の低下が見られ,変形性 能は向上しなかった.また,詳しくは後述するが, いずれも修復部の直上で新たに座屈が生じた.

3.2 包絡線

図-9~図-12 に各修復方法の包絡線の一部を示す. 図-9はコンクリートを1.5Dまで充填した供試体 である.1.5Dまで充填することで最大水平荷重は 十分回復し,変形性能も大きく向上することが分か る.図-10より、コンクリート充填高さが高いほど 荷重が増加することが分かる.また、充填高さにか かわらず変形性能は向上している.ジベルのある供 試体はジベルのない供試体と比較して、最大水平荷 重が高く、充填高さが0.5Dでも大きく荷重が回復 した.最大水平荷重に達した後も86y程度までは顕 著な荷重の低下はなく、変形性能も高いことが分か る.

図-11 に示す鋼板巻き立て修復では,新品時が 3δ_y, 巻き立て鋼板基部の溶接が有る CY0.5D-600W が 4δ_y,基部の溶接が無い CY0.5D-600 が 5δ_y程度で最 大水平荷重となっている.CY0.5D-600W は最大水 平荷重,変形性能ともに向上しているが,最大水平 荷重後の荷重の低下が著しい.CY0.5D-600 は最大 水平荷重以降の荷重低下が緩やかであり,変形性能 が大きく向上した.また,橋脚の溶接性を考慮せず 使用することができる.

図-12 に示す補剛材修復では,新品時が 3δ_yで最 大水平荷重に達しているのに対し,TH50-8 は 5δ_y 程度で最大水平荷重となっており,その後の荷重の 低下も緩やかで,変形性能が大きく向上している. TH50-8 は最大水平荷重についても十分回復してい る.TH75-12,TH100-16 は新品時とほぼ同じ包絡 線を示した.

-283-

3.3 供試体損傷状況

3.3.1 コンクリート充填修復

(1)鋼管部の損傷

図-13(a),(b)に実験後の供試体鋼管部の損傷状況 を示す.

ジベルの無い供試体は、板厚および充填高さに関わらず、修復前に生じていた基部の座屈が徐々に進行していった. C1.5D-T4.5A, C1.0D-T9.0, C0.5D-T9.0を除く6体の供試体は86y以降でクラックが発生した.クラックは座屈変形の頂部、座屈部の下、鋼管製造時の溶接のうち座屈部にかかる箇所のいずれかで発生した.クラックが発生したのはいずれも86y以降の大変位に達してからである.これは道路橋示方書に示されているコンクリート充填円形鋼製橋脚の許容ひずみ5cyに相当する56y以上である.

ジベルの有る供試体は,基部の既存の座屈が進行 するとともに,ジベル溶接位置に新たに座屈が発生 した.ジベル溶接位置の座屈は充填高さが 0.5D の 供試体のほうがより顕著に見られたが,これによる 荷重の大きな低下などは見られなかった.その後, 10δy 程度の大変位において基部の座屈部の頂部に クラックが発生した.

(2)充填コンクリートの損傷

実験後に供試体を溶断し,充填コンクリートの破 壊状況を観察した.図-13(c),(d),(e)に充填コンク リートの損傷状況を示す.いずれの供試体も座屈部 の頂点の高さで水平方向に断面全体に達するひび 割れが発生した.これは,繰り返し載荷の過程で, 充填コンクリートに引張力が作用した時に発生し たひび割れが徐々に進行していき,断面全体に達し たと考えられる.中には,ひび割れの開始高さが異 なったためか,図-13(d)に示すようにひび割れが二 層発生している供試体も見られた.また,鋼管座屈 部に充填したコンクリートには局部的な圧壊が生 じた.これは鋼管座屈部の充填コンクリートにより 座屈の進行が抑えられためと考えられる.なお,充 填高さおよび鋼管の板厚が異なっても,充填コンク リートの破壊形状に大きな違いは見られなかった.

ジベルの有無で比較をすると、ジベルの無い供試 体では充填コンクリートの損傷が座屈部に集中し ているのに対し、ジベルの有る供試体では図-13(e) に示すように座屈部以外の箇所でも様々な損傷が 見られた.これは、ジベルにより充填コンクリート の抜け上がりが拘束されるため、ひび割れが断面全 体に達した後も充填コンクリートが鉛直軸力の一 部を受け持っていたためであると考えられる.特に 充填高さが 0.5D の供試体ではせん断破壊特有の破 壊が見られた.また、ジベル周辺のコンクリートが 崩れており、図-13(f)に示すようにジベルにも変形

(a) C1.5D-T6.0A
 基部の座屈部に発生
 したクラック

(b) C0.5D-T9.0D ジベル溶接位置に 生じた座屈

(c) C1.5D-T9.0 コンクリートの損傷 (ジベル無し)

(d) C1.5-T9.0 二層のひび害れ

(f) C0.5D-T9.0D

ジベルの変形

(e) C0.5D-T9.0D コンクリートの損傷 (ジベル有り)

図-13 コンクリート充填修復の損傷状況

が見られた.なお,溶接が原因と考えられるクラックなどは見られなかった.

3.3.2 鋼板巻き立て修復

図-14(a)に示すように巻き立て鋼板基部の溶接が 無い CY0.5D-600 は,修復前から生じていた基部の 座屈部の上部で,新たに内側にへこむような座屈が 生じた.一方で,鋼板基部とベースプレートを溶接 した CY0.5D-600W は,図-14(b)に示すように,修 復部直上に新たに座屈が生じ,修復部に損傷は見ら れなかった.いずれの供試体も座屈がさらに外側に 進行するのは抑制されており,巻き立て鋼板基部の 溶接が無くても,外側へ膨らむ座屈に対して十分な

¹⁰⁰

拘束効果が得られることが分かった.実構造物では, アンカーボルトなどが存在し,容易に溶接が出来な い場合も有るため,有効な手法の一つと考えられる. また,いずれの供試体もコンクリートが抜け上がる ような挙動は見られず,ジベルにより抜け上がりが 抑制されたと考えられる.

(a) CY0.5D-600(b) CY0.5D-600W(溶接無し)(溶接有り)図-14鋼板巻き立て修復の損傷状況

3.3.3 補剛材修復

図-15 に補剛材修復の実験後の損傷状況を示す. TH50-8 は基部の座屈が進行するとともに,内側に 溶接した補剛材に座屈やクラックが生じた.一方で, TH75-12, TH100-16 は図-15(b)に示すように修復箇 所の直上に新たに外側に膨らむ座屈が生じ,その後 荷重が急激に低下した.これは,修復部の強度が大 きく増加したためであり,耐力が過剰に増加した修 復であると考えられる.補剛材については座屈やク ラックは確認されなかった.TH75-12, TH100-16 は,図-8(i)に示したように荷重-変位関係は新品時 と近い曲線となったが,異なる部位に損傷が発生し た.このことから今,回使用した供試体の損傷の程 度の場合,補剛材の量が過剰であったと考えられる. また,溶接が原因と考えられるクラックは発生して おらず,溶接性に問題はなかったと考えられる.

(a) TH50-8 補剛材の座屈 およびクラック

 0-8
 (b) TH75-12

 の座屈
 修復箇所直上に新

 フラック
 たに生じた座屈

 図-15
 補剛材修復の損傷状況

3.4 最大水平荷重および剛性

図-16 に修復後に回復した最大水平荷重 Hmax を 示す. 図の横軸はそれぞれ新品時供試体の最大水平 荷重 Hmax(ORG)で無次元化している. 16 体の供試 体のうち 12 体は最大水平荷重が新品時のおよそ ±10%以内となった. C1.5D-T4.5A は新品時に対し 19%の増加, C1.0D-T9.0, C0.5D-T9.0, C0.5D-T9.0D はそれぞれ 18%, 37%, 14%の減少となった.

図-17 に修復前および修復後の剛性比 K/K₀を示 す.剛性については 6 体の供試体が新品時の±10% まで回復した. コンクリートを 1.5D まで充填した ものは,剛性が大きく回復しており,特に板厚の薄

い供試体では効果が大きくなっている.一方で C0.5D-T9.0 は剛性の回復はわずかである.これは 内部に充填したコンクリートが抜け上がったため であると考えられる.また,鋼板巻き立て修復(CY Type)では,最大水平荷重は±10%以内に回復したが, 剛性の回復量は小さくなっている.これは,水平荷 重が作用した場合,圧縮側の座屈部が外側に膨らむ のは拘束されるが,引張側では座屈部が延ばされ橋 脚が抜け上がるような挙動を示すため,コンクリー トの拘束効果があまり発揮されなかったためと考 えられる.

3.5 塑性率

橋脚の変形性能について塑性率を用いて評価する.本研究では、図-18 に示すように最大水平荷重 に達した後、最大水平荷重の95%となった時の水平 変位を δ_{95} とし、式(6)より塑性率 μ_{95} を算出した.図 -19 に修復後の塑性率を示す.図の横軸は新品時供 試体の塑性率 μ_{95} (ORG)で無次元化している.

$$\mu_{95} = \delta_{95} / \delta_{v}$$

コンクリート充填による修復(C Type)ではすべ ての供試体で塑性率が向上し,最高で新品時の3 倍以上に向上した.このうちジベルの無い供試体で は,充填高さによる効果の違いが見られ,充填高さ が 0.5D の場合塑性率の向上はわずかである.ジベ ルを設けた供試体では,いずれも新品時の2倍以上 となった.鋼板巻き立て(CY Type)および補剛材(TH Type)による修復では,修復箇所の直上で新たに座 屈が生じた CY0.5D-600W,TH75-12,TH100-16の 場合,同種の修復方法でも CY0.5D-600,TH50-8 と 比較して塑性率が低くなっている.特にTH75-12 については新品時よりも低下している.

4. 修復後の耐震性能に関する検討

本研究で実施した修復方法では,修復方法ごとに 最大水平荷重および剛性が異なる様々な結果が得 られた.修復後に,恒久的な使用を考慮する場合, どの程度の性能まで回復させればよいか議論をす る必要がある.しかし,修復後の性能がどの範囲内 であれば恒久的な使用に耐えられるかは明らかで なく,有効な修復方法の判定は困難である.

そこで、本研究では、バイリニアモデルでの簡易 的な地震応答解析を行った.最大水平荷重比 H/H_0 (=0.7~1.3)および剛性比 K/K_0 (=0.6~1.3)をパラ メータとして解析を行い最大応答変位の変化を調 べた.ここで、 H_0 および K_0 は、それぞれ新品時の 最大水平荷重および剛性である.表-7に使用した 橋脚モデルの諸元を示す.実験供試体に対し4倍の 大きさの橋脚を想定している.

図-20 に解析結果を示す.図の縦軸は最大応答変 位 X を新品時の橋脚(H/H₀=1, K/K₀=1)の最大応答 変位 X₀で無次元化した値である.図中には新品時 の結果を中心に,K/K₀=0.8~1.2,X/X₀=0.8~1.2の 範囲を実線で示している.なお,応答変位について は新品時から大きく増加しないことを必要な性能 と設定する.

図-20より,地震波により異なるものの,概ね剛 性および荷重が低下するほど変位が増加している. 剛性に関しては,例えば図-20(a),(e)より,新品時 の80%以下の場合,応答変位が大きく増加してい

表-7 橋脚モデル諸元

直径 D (mm)	2444.7
板厚 t (mm)	35.6
載荷点高さ h (mm)	11560
断面 2 次モーメント I (mm ⁴)	1.955×10^{11}
径厚比パラメータ R _t	0.098
細長比パラメータ λ	0.358

-286-

(6)

図-20 最大応答変位の解析結果

ることが分かる.剛性が高いほど応答変位は安定す るが、図-20(g)のようにばらつきが見られるケース もある.なお、剛性を回復させるのに伴い固有周期 が大きく変化することは好ましくない.従って、例 えば固有周期の変化を±10%以内に抑えるならば、 T=2 $\pi\sqrt{m/k}$ の式を用いて換算すると、剛性は、新 品時に対し±20%程度とすることが望ましいと考 えられる.

最大水平荷重比 H/H₀については図-20(d), (i)より 90%以下の場合, 応答変位の増加が顕著に見られる. また, 地震波によっては図-20(b), (c), (f)のように H/H₀が増加するにつれて応答変位が増加する場合 もある.橋梁全体として予期せぬ挙動が発生するこ とで, 2.3 で述べたように損傷箇所の変化も予想さ れる.

入力地震動による解析結果の差はあるものの,本 研究で目標とした修復後の性能と解析結果は概ね 一致した.以上より,本研究では,新品時に対して 剛性が±20%程度,最大水平荷重が±10%程度まで 回復するような修復をすることを提案する.ただし 実験では,修復後の性能が目標範囲内であっても, 新たな部位に損傷が生じるなど損傷箇所が変化す るケースが見られる.そのため,修復部近傍での耐 力の急激な変化を緩和するような修復方法をとる 必要がある.

5. 結論

本研究では極大地震により損傷した鋼製橋脚の 早期復旧を想定し,基部に座屈の生じた円形断面鋼 製橋脚に対し3種類の修復を施し,繰り返し載荷実 験を行ってその耐震性能を検討した.本研究で得ら れた結論を以下に示す.

1. 本研究で提案した 3 種類の修復方法は、いず れも目標とする耐震性能まで回復させること が可能である.

- コンクリート充填修復では、1.5D 程度の高さ まで充填することで、最大水平荷重、剛性と もに大きく回復し、優れた修復効果が得られ た.また、ジベルを設置することで、充填高 さが0.5D 程度でも剛性が76%、最大水平荷重 が86%まで回復した。
- 補剛材修復では補剛材の本数や形状を適切に 選択することで、損傷前の耐力まで回復させ、 変形性能を向上させることができると考えら れる.ただし、橋脚本体の溶接性が確保され ていることを確認する必要がある.
- 鋼板巻き立て修復では、鋼板基部の溶接の有 無によらず十分な座屈拘束効果が得られ、最 大水平荷重は新品時に対して±10%まで回復 した。
- 解析および実験結果を踏まえ、新品時に対し て最大水平荷重を±10%程度、剛性を±20%程 度まで回復させることで、本研究で目標とす る修復後の性能を満足すると考えられる。

謝辞

本研究は愛知工業大学耐震実験センターにおい て実施し,愛知工業大学耐震実験センター研究経費 および科学研究費(基盤研究B,代表:名城大学 宇佐美勉)を使用して行いました.ここに感謝の意 を表します.

付録

本研究と文献12)で使用した供試体の対応表を表 -A1に示す. 文献12)で行った実験は、軸力比、板

No.	Туре	本研究	文献 12)
1-1		C1.5D-T4.5A	R4.5-NC(ORG-1)
1-2		C1.5D-T4.5B	R4.5-CR
2-1		C1.5D-T6.0A	R6.0-NC(ORG-2)
2-2		C1.5D-T6.0B	R6.0-CR
5-1	CTrme	C1.5D-T9.0	P35-NC
5-2	Ciype	C1.0D-T9.0	P25-NC
5-3		C1.0D- T9.0D	P15-CR
5-4	1	C0.5D- T9.0	ORG-5
5-5		C0.5D- T9.0D	pushover
4-1		C1.5D-T12.0A	R12.0-CR
4-2		C1.5D-T12.0B	R12.0-NC(ORG-4)
3-1	CVtrme	CY0.5D-600	R9.0-CR
3-2	CItype	CY0.5D-600W	R9.0-NC(ORG-3)
5-6		TH50-8	P25-CR
5-7	ТН Туре	TH75-12	P15-NC
5-8		TH100-16	P35-CR

表-A1 供試体名の対応表

厚, 圧縮芯の有無, 載荷履歴などの条件が異なって いる. なお, P15, P25, P35 は軸力比 P/Py(%), R4.5, R6.0, R9.0, R12.0 は板厚(mm), CR, NC はそれぞ れ圧縮神の有無を意味する.本研究では,供試体を 板厚,鋼種および損傷の程度から分類して用いた. 供試体名は C Type では,例えば C1.5D はコンクリ ート充填高さ 1.5D, T4.5 は鋼管の板厚が 4.5mm, 末尾の A, B は通し番号を意味する. CY Type では, CY0.5D は鋼板巻き立て高さ 0.5D, 600 は鋼管の直 径が 600mm, 末尾の W は溶接ありを意味する. TH Type では,例えば TH50 は断面積の 50%, 8 は補剛 材の本数を意味する.

参考文献

- 阪神高速道路公団:大震災に立ち向かって-阪神. 淡路大震災記録書, 1996.1.
- 阪神高速道路管理技術センター:大震災を乗り越 えて一震災復旧工事誌一,阪神高速道路公団, 1997.9.
- (社)日本道路協会:道路橋示方書.同解説 V 耐震設計編,2002.3.
- 例えば 宇佐美勉,鈴木森晶, Iraj H.P.Mamaghani, 葛漢彬: コンクリートを部分的に充填した鋼製橋 脚の地震時保有水平耐力照査法の提案,土木学会 論文集, No.525/I-33,pp.69-82,1995.10.
- 例えば 松村政秀,北田俊行,澤登善誠,中原 嘉郎:無充填区間を有するコンクリート充填工 法による既設鋼製橋脚の耐震補強法に関する 実験的研究,構造工学論文集, Vol.47A, pp.35-44, 2001.3.
- 例えば 北浦雅司, 折野明宏, 石澤俊希: コン クリートを部分充填した円形鋼製橋脚の弾塑 性挙動に関する研究, 土木学会論文集, No.696/ I-58, pp.285-298, 2002.1.
- 7) 例えば 忠和男, 櫻井孝昌: 既設円筒鋼製橋脚 の鋼板貼り付けによる耐震補強法, 構造工学論 文集, Vol.49A, pp.139-144, 2003.3.
- 鈴木森晶,青木徹彦,野村和弘:簡易修復後鋼製 ラーメン橋脚の耐震性能に関する実験的研究,構 造工学論文集,Vol.46A,pp.135-142,2000.3.
- 2) 尾松大道,鈴木森晶,青木徹彦:損傷した矩形断 面鋼製橋脚の修復後の耐震性能に関する研究,構 造工学論文集, Vol.52A, pp.445-453, 2006.3.
- 10) M Suzuki,H Omatsu,A Imanaka,T Aoki : Seismic resistance capacity of repaired steel bridge piers after severe earthquake, International Conference on STRUCTURAL CONDITION ASSESMENT, MONITORING AND IMPROVEMENT, pp.291-298, December 2005.

- 11) Moriaki Suzuki, Yoshiyuki Shimaguchi, Tetsuhiko Aoki : RESIDUAL STRENGTH OF DAMAGED STEEL BRIDGE PIER WITH CIRCULAR CROSS SECTION AND ITS REPAIR METHOD,JOINT CONFERENCE PROCEEDINGS 7CUEE & 5ICEE,pp.2011-2016,March 3-5,2010.
- 12) 服部宗秋,青木徹彦,鈴木森晶:圧縮芯をもつ 鋼管橋脚の耐震性能実験,構造工学論文集, Vol.52A, pp.465-475, 2006.3.
- 13) 森下益臣,青木徹彦,鈴木森晶:コンクリート 充填円形鋼管柱の耐震性能に関する実験的研 究,構造工学論文集, Vol.46A, pp.73-83, 2000.3.
- 14) 宇佐美勉:鋼平面ラーメン構造物の極限強度評価式の実験データによる検証,構造工学論文集, Vol.36A, pp.79-88, 1990.3.
- 15) (社)日本道路協会:道路橋示方書.同解説 Ⅱ
 鋼橋編, 2002.3.

(2011年9月14日受付)

-289-