内灘風力発電所における 2011 年度冬季の雷電流観測

Observation of Lightning Current at Uchinada Wind Power Station in Winter of 2011

箕輪昌幸⁺, 櫻野仁志⁺⁺, 渡辺崇⁺⁺⁺, 窪内祥之⁺⁺⁺⁺, 依田正之⁺ Masayuki Minowa, Hitoshi Sakurano, Takashi Watanabe, Yoshiyuki Kubouchi, Masayuki Yoda

Abstract The Uchinada Wind Power Station is located in front of a sea coast of Japan Sea. In this area, many lightning occur in winter and a lot of severe troubles have been caused by the winter lightning. So, a lightning tower was set in the Uchinada site. And lightning observation has been carried out since 2003. This paper presents mainly the observation results in the winter season in 2011.

1. はじめに

近年は、地球環境問題より風力発電設備の建設が増え ている。また、風車はスケールメリットを得るために大 型化が進んでいる。当然のことながら、風車の大型化と ともに風車への落雷の危険率は増加し、風力発電システ ムの雷対策が大きな課題になっている。特にわが国では、 主に日本海沿岸において、冬季雷による被害が数多く報 告されており^{1)~10)}、雷対策が重要課題となっている。

内灘風力発電所は、2003年(平成15年)12月に運転 を開始した。建設地は冬季雷の多い地域であるため、当 初より風車への落雷防止対策として避雷塔が建設されて いる。また、雷電流測定装置等も同時に設置し、風力発 電所への落雷観測も開始した。そして風車および避雷塔 への落雷データを蓄積するとともに、被雷塔の効果等に 関する検討が行われている^{11),12)}。

本報告では、2011年度の観測結果を報告する。

2. 内灘風力発電所の概要

内灘風力発電所は、日本海を見渡せる見晴らしの良い 高台(標高41.3m)に建設されている。図1および図2 に示すように、風車は1機で、その風車の北西側(日本 海側)に避雷塔が設置されている。風車の最高地上高さ は100.25m、被雷塔の地上高さは104.99mである。

* 愛知工業大学 工学部	電気学科 (豊田市)
† † カエラ研究所(高岡市)	·)
† † † 内灘町 都市整備部	(内灘町)
**** (株)北計工業 開発セ	ンター (白山市)

風車と避雷塔との距離は 45.5m である。これらを含めて の風車と避雷塔の緒元を表1に示す。

図2 内灘風力発電所の全景

項目		諸元
発電所建設地点標高	(m)	EL=41.3
年平均風速	(m/s)	5.2(地上高 30m)
定格出力	(kW)	1500
定格風速	(m/s)	12
ローター直径	(m)	70.5
ハブ高さ	(m)	65
風車最高地上高	(m)	100.25
避雷塔地上高さ	(m)	104.99
風車から避雷塔までの距離	É (m)	45.5

表1 風車と避雷塔の緒元

3. 内灘風力発電所における雷電流観測

避雷塔での電流測定では,避雷塔の各脚(合計4脚) にロゴスキーコイルを設置し,各コイルで検出されたデ ータをアナログ加算して避雷塔に流れる電流として記録 している。風車での電流測定では,風車本体を囲むよう に,4分割にした大口径ロゴスキーコイルを設置し,各 分割部分で検出できたデータをアナログ加算して風車に 流れる電流として記録している。記録できる最大電流値 は,避雷塔用では±100kA,風車用では±50kAである。 トリガレベルは各測定レンジの3%である。また,最大 サンプリング周波数は,避雷塔用では4MHz,風車用で は8MHzである。

4. 内灘風力発電所における雷電流観測の結果

4・1 落雷電流の観測結果の概要

表 2(次ページ)に 2011 年 11 月から 2012 年 3 月までに 内灘風力発電所で観測された雷電流観測結果,気象デー タおよび落雷位置標定システム (LLS: Lightning Location System) データを示す。気温,風速,風向は内灘風力発 電所からおよそ 4.1km 北西にある気象観測所「かほく」 で観測されたデータである。No.1 と No.20 の落雷は波形 を見ると,二つのピークがあるため,それぞれのピーク に対して瞬度の数値を示してある。LLS データの距離は 風車の位置から LLS が標定した落雷地点までの距離を, 分別は LLS が雲放電か対地雷放電かを判定した結果を 示している。LLS データが落雷を検出していない場合は No data と示した。

電流値が小さい場合ノイズ等で正確な値が求めにくい ため、今回はしきい値を±2kAとしてデータ処理を実施 した。そのため表2において、電流の大きさが2kA未満 の場合、電気量および峻度は値を示していない。 表2より,電流値の大きさが 10kA を超えるものは 4 例あり,いずれも避雷塔で観測された。今回の観測において,風車で観測された,最も大きい電流値は 10kA であった。

4・2 雷撃電流波形

観測できた波形データの中から特徴ある3例を以下に 示す。

(1) 2011 年 11 月 24 日 00 時 14 分 35 秒の電流波形 図 3 は 2011 年 11 月 24 日 の 0 時 14 分 35 秒に内灘風力発 電所の避雷塔で観測された雷電流波形である。表 2 の No.1 の落雷である。波形図より波形の山が 2 つ認められ る。この落雷は多重雷であると考えられる。電流波形を みると,最大値は+19kA,継続時間が約 13ms であるこ とがわかる。ゆえにこの雷は,IEC 規格が示す継続時間 2ms 以上 1s 未満の長時間雷撃に相当する。しきい値を± 2kA として電気量を求めると約 39.3C である。また,こ の波形の第一雷撃の峻度は約 0.79kA/µs で、第二雷撃の 峻度は約 0.21kA/µs となった。

図3 2011年11月24日0時14分35秒に観測された 雷電流波形(観測場所:避雷塔)

(2) 2011 年 12 月 24 日 14 時 51 分 50 秒の電流波形 図 4 は 2011 年 12 月 24 日の 14 時 51 分 50 秒に風車で観 測された雷電流波形である。表 2 の No.8 の落雷である。 この波形を見ると最大値は 1.5kA であった。尚,最大値 がデータ処理のしきい値より小さいため,電気量と峻度 は求めていない。

図 4 2011 年 11 月 24 日 14 時 51 分 50 秒に観測さ れた雷電流波形(観測場所:風車)

No. 目閉		測定場所電	旦十	気温 [℃]	風速 [m/s]	風向	電気量 [C]	峻度 [kA/µs]	LLS データ		
	日時		取八 雷流值[kA]						電流	距離	分別
		304721							[kA]	[km]	23733
1	11/11/24	А	+19, 0	11.4	11.8	西	39.3	0.79	+27 ^{注2}	1.9 ^{注2}	CC
	00:14:35							0.21	+15 1 2	7.4 # 2	CC
2	00:35:37	А	+7, -10	11.8	11.4	西南西	12.0×10 ⁻³	16.0	-9	0.3	CC
3	11/11/24 00:35:37	В	+2.0, -10.0	11.8	11.4	西南西	0.38	1.28	-9	0.3	CC
4	11/11/24 00:24:03	А	+4, -4	11.8	11.4	西南西	6.75×10 ⁻³	0.13	+26	7.8	CG
5	11/12/10 18:56:14	А	+5, -3	5.0	4.8	南西	9.50×10 ⁻³	16.0	+9	3.4	CC
6	11/12/22 01:08:24	А	+7, -5	4.6	2.0	東	19.9×10 ⁻³	16.0	+60	2.3	CG
7	11/12/24 14:51:50	А	+14, -6	1.1	4.5	南南西	11.6×10 ⁻³	22.4	-32	4.8	СС
8	11/12/24 14:51:50	В	+1.0, -1.5	1.1	4.5	南南西	_	_	-32	4.8	CC
9	11/12/24 15:54:16	А	+4, -15	3.9	8.4	西北西	31.8×10 ⁻³	1.6	No data	No data	No data
10	12/01/04 01:19:53	А	+4, -3	0.2	2.8	南	19.3×10 ⁻³	0.06	No data	No data	No data
11	12/01/04 01:20:40	В	+1.0, -3.5	0.2	2.8	南	3.75×10 ⁻³	0.01	+34	7.8	CC
12	12/01/04 01:23:46	В	+1.0, -2.0	0.2	2.8	南	_	_	-6	5.0	CG
13	12/01/25 20:51:06	В	+1.0, -2.0	0.3	6.7	北	_		No data	No data	No data
14	12/01/25 23:33:45	В	+8.0, -2.0	-0.9	2.9	北	26.8	0.0014	+12	0.5	CG
15	12/02/01 07:33:01	В	+1.0, -2.5	0.4	8.7	南西	2.50×10 ⁻³	0.07	No data	No data	No data
16	12/02/01 07:36:58	В	+1.0, -2.0	0.4	8.7	南西	_		No data	No data	No data
17	12/02/02 19:15:59	В	+1.0, -3.0	-1.7	6.8	北北西	23.1×10 ⁻³	0.16	No data	No data	No data
18	12/02/02 19:19:43	А	+7, -2	-1.7	6.8	北北西	88.9×10 ⁻³	0.62	No data	No data	No data
19	12/02/08 17:14:18	В	+1.0, -1.5	0.4	9.0	西南西	_		No data	No data	No data
20	12/03/25 03:41:52	А	+29, 0	2.9	10.3	南西	157	0.04 0.0014 ^{注1}	No data	No data	No data

表2 2011 年度内灘風力発電所の雷観測結果と気象データ

A: 避雷塔, B: 風車, CC: 雲放電, CG: 対地雷放電, 注1: 第二雷撃の瞬度, 注2: 同時刻の LLS で検知のデータ

(3) 2012 年 3 月 25 日の 3 時 41 分 52 秒の電流波形 図5は2012年3月25日の3時41分52秒に避雷塔で観 測された雷電流波形である。表2のNo.20の落雷である。 この電流波形をみると、波形に2つのピークが認められ るので、この落雷は多重雷であると考えられる。電流の 最大値は+29kA,継続時間は約40msだとわかる。よっ てこの雷は IEC 規格に照らし合わせると、継続時間 2ms 以上1s未満の長時間雷撃でとなる。しきい値を±2kAと して、電気量を求めると 157C となる。IEC 規格に示さ れる電パラメータの電気量の 50%値は 80C である。した がってこの落雷は標準より電気量が大きい落雷というこ とがわかる。峻度は第一雷撃で約 0.04kA/µs、第二雷撃 で約 0.0014kA/µs と推定できた。電気量と同じように IEC 規格でしめされる雷電流瞬度パラメータ値の50%値 は 2.4kA/µs であり、この落雷は峻度の小さい、つまり 電流の立上り変化が緩やかな落雷であるといえる。

図 5 2012 年 03 月 25 日 03 時 41 分 52 秒に観測さ れた雷電流波形(観測場所:避雷塔)

4・3 雷撃電流頻度分布

今回観測した結果を基に図6に雷撃電流頻度分布を示す。 この雷撃電流頻度分布グラフより,避雷塔における累積 頻度50%の電流値は約8kAであり,風車では約3kAと なった。風車に比べて避雷塔の電流値が高くなっており, 避雷塔に電流値の大きい雷が高い頻度で落ちていること がわかる。

よって今回の観測では、避雷塔には電流値の大きい雷が 落雷し,避雷塔による風車の保護効果が出ている,つま り避雷塔の保護効果が有効に作用しているといえる。

4・4 雷電気量頻度分布

図7に電気量の頻度分布を示す。このグラフでは低い 累積頻度の場合では比較がしにくい。したがって,累積 頻度10%のところで比較すると、避雷塔は電気量約157C なのに比べて風車は約26Cとなっており,電気量の大き な雷が避雷塔に高い頻度で落ちているといえる。よって 今回の観測では、避雷塔には電気量の大きい雷に対する 避雷効果があるといえる。

4・5 風向別落雷数

図8には風向別落雷数を示す。風車,避雷塔のいずれ も風向が南西側のときには落雷が多い結果となった,ま た,風向が東側のときには落雷が少ないことがグラフか らもわかる。今回,落雷記録時の風向は,大陸からの北 西方向の季節風が強い時よりも西南西や南西の風向が多 かった。したがって,今回は,日本海を低気圧が移動し, 大気が擾乱状態にあったときの落雷が多かったと推測さ れる。

図 8 風向別落雷数(2011 年冬季) (内灘風力への落雷)

4・6 LLSデータとの比較

風力発電所での雷電流の観測結果と雷電流を記録した 時刻に対応するLLSデータの状況は表2に示すとおりで ある。この LLS データは気象情報会社から入手したもの である。今年度の観測では、全部で20例の電流測定デー タが得られた。そのうち10例は避雷塔で、残り10例は 風車で記録された。これらの雷電流測定時刻と同時刻に LLS に記録のある電流測定データは 表 2 に示すように 11 例であった。そして、この 11 例の内、LLS で落雷と 認識されたのは4例で、その他は落雷ではなく雲放電等 と認識されていた。また、表 2 に示すように電流値が +29kA の 2012 年 3 月 25 日のデータも含め, 20 例の電流 測定データの半分近い9例では、風力発電所を中心とし た10km四方の領域に時刻対応するLLSデータ記録され ていなかった。このように、今回内灘風力発電所で観測 された落雷が LLS で半分近く捕捉されていない原因と しては以下のことが考えられる。

- ① 本風力発電所の風車と避雷塔の最高到達地上高さが がいずれも 100m を超えている。そのため表2に示 す雷電流観測結果の多くが、高構造物である避雷塔 または風車から上向き放電で始まる落雷によるもの と推測されること。
- ② 観測された電流波形の瞬度が小さく(波形変化が緩やか),IEC規格で示されている代表値である累積頻度 50%値(2.4kA/µs)より小さいものが多いこと。これらが波形判定に影響して,LLSでの保続率が低かったのではないかと考える。

5. まとめ

最大電流値が 10kA を超えるものはすべて避雷塔で観 測されており、大電流の雷撃に対して避雷塔は雷保護効 果を果たしていると推察する。

2011 年度の観測で 20 例の電流データを得た。今後, 引き続き観測を行い,落雷対策に資するデータを取集す るとともに。蓄積されたデータをさまざまな観点から検 討し,風力発電の雷害対策に役立てたいと考える。

参考文献

- 風力発電設備の雷撃調査研究委員会 編:「風力発電 設備の雷撃調査研究報告書」,電気設備学会中部支 部・北陸支部,2003
- 南正安,原英喜,箕輪昌幸,山田琢寛:「風力発電設備の雷被害とその対策手法に関する調査」,平成17

年度電気設備学会全国大会 講演論文集, pp.359-360, 2005

- A.Wada, S.Yokoyama, T.Numata, Y.Ishibashi, T.Hirose, "Lightning Damages of Wind Turbine Blades in Winter in Japan –Lightning Observation on the Nikaho-Kogen Wind Farm –", Proceedings of the 27th International Conference on Lightning Protection(ICLP), No.9a.7, pp.947-952, 2004
- 4) Masayuki Minowa, Masayasu Minami, Masayuki Yoda, "Research into Lightning Damages and Protection Systems for Wind Power Plants in Japan", Proceedings of the 28th International Conference on Lightning Protection(ICLP), No.XI-11, pp.1539-1544, 2006
- 5) NEDO:「平成 18 年度風力発電設備への落雷対策に 関する調査」, 2007
- 風力発電設備の雷害様相調査専門委員会:「風力発電 設備の雷害様相ならびに対策の現状」,電気学会技術 報告第1126号,電気学会,2008
- 7) 夏野大輔,白石浩之,崎野博之,延命正太郎,古永 充,本崎晃弘,出野勝:「次世代風力発電技術件キュ 開発事業(落雷保護対策活動報告)」,平成22年度第 32回風力エネルギー利用シンポジウム,pp.151-154, 2010
- 延命正太郎,夏野大輔,古永充,出野勝:「風力発電 設備の雷害被害-特に電気的被害について-」,電気 学会高電圧研究会,HV-10-082,2010
- 三木恵,三木貫,和田淳,浅岡聡,飛鳥幸仁,本庄 暢之:「日本海沿岸地域の冬季における風車への雷放 電特性-仁賀保高原風力発電設備の2005~2008 年度 冬季雷観測結果-」,電力中央研究所研究報告書, H09005,2010
- 本庄暢之:「風力発電設備の雷害実態と対策及び許認 可対応」,第16回 EMC 環境フォーラム, pp12-22, 2010
- 11) 箕輪昌幸, 櫻野仁志, 渡辺 崇, 窪内祥之, 依田正之:
 「内灘風力発電所における冬季雷放電の観測-2011
 年度の観測結果-」, 2012 年(第 30 回) 電気設備学
 会全国大会 B-20, 2012
- 12) M. Minowa, H. Sakurano T. Watanabe, Y. Kubouch, M. Yoda, "OBSERVATION OF LIGHTNING DISCHARGE AT UCHINADA WIND POWER STATION", in Proc. 2012 International Conference on Grounding and Earthing, No. P3, 2012