矩形貯槽のスロッシング現象と プラスチックフィルターを用いた抑制方法

A Study on the sloshing behavior and its control method using a plastic filter for the rectangular tank

則竹一輝[†]・鈴木森晶^{††}・奥村哲夫^{††} Kazuki NORITAKE, Moriaki SUZUKI, Tetsuo OKUMURA

Abstract The water tank damages caused by the sloshing were reported in case of earthquake. In this study, the experiment to investigate the sloshing behavior of different dimensional aspect ratio of rectangular tank under the different excitation angle has been performed. In addition, the special size tank, such as the aspect ratio is close to 1:1, has been examined in detail. And, based on the results of these experiments, sloshing control methods using plastic filter has developed. For example, filter installation position, depth, length, and so on. Finally, we obtained the effective filter installation position and area for the tank wall.

1. 序論

我が国では、地震によるスロッシング現象の被害が数 多く報告されている.古くは、1964年の新潟地震や1983 年の日本海中部地震の際に被害が報告されている.近年 では、2003年に発生した十勝沖地震(M8.0)¹⁾、2007年の 新潟県中越沖地震(M6.8)、2011年の東北地方太平洋沖地 震(M9.0)が記憶に新しい.

新潟地震や,1995年の兵庫県南部地震においては,小 規模な円形タンクが傾斜することによって,甚大な被害を 被った事例が報告されている.また,十勝沖地震では,円 形の石油タンクの浮屋根が大きく揺れ,浮屋根が破壊され た.その結果,内溶液が漏れ出し,火災が発生した²⁾.

一方,新潟県中越沖地震では,柏崎刈羽原子力発電所 6号機原子炉建屋4階の矩形型使用済み核燃料プールに スロッシング現象が起き,内溶液が溢流するという事故 が発生した³⁾.また,東北地方太平洋沖地震では,使用 済み核燃料プールだけでなく,病院やマンション等の屋 上に設置されている,貯水用の比較的小規模な貯槽につ いての被害も報告されている.

現在,このスロッシング現象を抑制する方法として, 浮屋根式の円形貯槽に対しては,浮屋根に緩衝材を取り

*愛知工業大学大学院 建設システム工学専攻(豊田市) **愛知工業大学 都市環境学科土木工学専攻(豊田市) 付ける方法などの研究が進められている⁴⁾.また,矩形 貯槽に対しては,金網を設置して液面揺動を抑制する研 究などが行われている⁵⁾.しかしながら,矩形貯槽は円 形貯槽と異なり,加振される角度,貯槽の奥行き・幅寸 法比および反射波が影響し,液面揺動に変化を及ぼすと 推測される.

そこで本研究では、矩形貯槽の奥行き・幅寸法比、加 振される角度を変更し、矩形貯槽におけるスロッシング 現象の挙動を詳細に把握し、その結果を基に、矩形貯槽 におけるスロッシング現象の抑制方法を検討する.

2. 実験計画

2・1 実験条件および実験概要

本研究では、まず矩形貯槽におけるスロッシング現象 の挙動を把握するために、表-1に示すような貯槽の寸法 比および入射角をパラメータにして加振実験を行った. 表-1 中の貯槽の奥行き(D)と幅(L)の比を寸法比(D/L)と し、入射角(加振される角度)θに対する説明を図-1およ び図-2に示す.

これらの図は、寸法比(D/L)が1:3および3:1の貯 槽において、入射角(加振される角度)を変更した場合の、 上から見た模式図である.図に示す通り、幅と奥行きが異 なる寸法の場合には、加振軸と平行な貯槽の辺を幅と設定 し、入射角 $\theta \in 0^{\circ}$ とした. そして、同じ形状の貯槽であっても、入射角 $\theta = 0^{\circ}$ のときに長辺が幅となる場合と、短辺が幅となる場合があり、幅と奥行きを入れかえて 2 通りの寸法比で実験を行った⁶⁾. 実際には入射角を変更する毎に各寸法比において、長辺が幅となる場合と短辺が幅となる場合が存在するので、それぞれの幅に対する固有振動数の理論値周辺の振動数を入力して加振を行い、2 通りの実験を行った. そして、寸法比が 1:1 のときは特異な挙動をすることが容易に想像できるので、表-2 に示すように、寸法比を 1.09~0.92 まで細かく変更し、実験を行った⁷⁾. ここで、水深比(H/L)とは、内溶液の水深 H を貯槽の幅 L で除したものであり、詳細は 2.5 で述べる.

表-3 は,矩形貯槽のスロッシング現象の挙動を把握し た後に行った,波高抑制効果のある装置についての実験 パラメータである.これまでに本研究室で行った研究で は,円形貯槽にプラスチック繊維の装置を設置すること により,スロッシング現象発生時の波高を抑制できるこ とが分かっている⁸⁾.本研究では,過去の実験結果を基 に,プラスチック繊維を用いた装置を矩形貯槽の内壁に 設置した.使用したプラスチック繊維を写真-1 に示す. 装置は,厚さ 3mm のアクリル板に厚さ約 25mm のプラスチ ック繊維を接着させたものである.

装置の設置箇所は,矩形貯槽の内壁4面に設置したものを4面型,加振軸に対して平行な内壁に設置したものを加振軸平行2面型(以下,平行型),加振軸に対して直交な内壁に設置したものを加振軸直交2面型(以下,直交型),貯槽の角に設置したものを4つ角型とし,本研究ではこれら4つの設置箇所で,効果の違いを検討した.

また,浸漬比とは,装置が内溶液に浸かっている深さの比率のことであり,装置が内溶液に対して底まで浸かっていれば1.0とし,半分だけ浸かっていれば0.5とする.同様に0.0は装置が浸かっていない状態であるが,本研究での浸漬比0.0とは,装置を内溶液水面に接するように設置したものとする.装置長は,DまたはLに対する装置の長さである.

2・2 貯槽概要

本研究で実験に用いた矩形貯槽の寸法を表-4 に示す. 表中の寸法比(D/L)とは,貯槽の奥行きを幅で除した値で ある.なお,前節で述べた通り,奥行きと幅の寸法が異な る貯槽は,加振方向に対する幅を 2 通り設定し実験を行 った.

表-4 に示した No. 1~4 の貯槽は表-1 の実験に, No. 5 の貯槽は,表-2 に示した, D/L=1 近傍の実験に使用した. また,波高抑制効果の検討をした実験(表-3 の実験パラ メータ)には, No. 3 の貯槽を用いた.実際に装置を設置

表-1 矩形貯槽における実験パラメータ

寸法比 D/L	1:3, 1:2, 1:1.3, 1:1
	1.3:1,2:1,3:1 計7ケース
入射角 θ	0°~90°(15°刻み) 計7ケース
合計	49 ケース

表-2 寸法比1:1 近傍の矩形貯槽の実験パラメータ

寸法比 D/L	1.09, 1.04, 1.02, 1.01, 1.00
	0.99, 0.98, 0.96, 0.92
	計9ケース
水深比 H/L	0.094, 0.20, 0.54 計3ケース
水深比 H/L 入射角 θ	0.094, 0.20, 0.54 計3ケース0°~90°(15°刻み) 計7ケース

表-3 装置を設置した貯槽の実験パラメータ

設置箇所	4 面型,加振軸平行2 面型(平行型),				
	加振軸直交2面型(直交型),4つ角型(※)				
浸漬比	1. 0, 0. 6, 0. 4, 0. 2, 0. 0				
装置長	100%, 50%, 20%				

※全 50 ケース, ただし, 4 つ角型は装置長 20%のみ実施

(a) 0°時(b) 15°~75°時(c) 90°時
 図-1 1:3 貯槽の加振方向(入射角)

(a) 0°時(b) 15°~75°時(c) 90°時
 図-2 3:1 貯槽の加振方向(入射角)

した貯槽を写真-2 に,矩形貯槽の一例を,写真-3 および 4 に示す. なお, No.5 に使用した貯槽(写真-4)は,貯槽 内部に設置したアクリル板を移動させることで寸法比を 変更することができ,実験を行った際にはアクリル板が 動かないように固定して実験を行った.

表中の No.3 の貯槽は,長辺と短辺の比率が柏崎刈羽原 発の使用済み核燃料プールと同じである.

2・3 加振方法

実験は,貯槽を振動台の上に載せ,油圧サーボ型試験機 で正弦波を入力して加振した.図-3に,加振方法の模式

表-4 実験に用いた貯槽の寸法およびパラメータ

No.	寸法比(D/L)	奥行き D (m)	幅 L (m)	高さ (m)
1	1:3	0.283	0.884	0.45
2	1:2	0.287	0.536	0.36
3	1:1.3	0.437	0.588	0.45
4	1:1	0.438	0.438	0.45
5	$0.92 \sim 1.00 \cdot 1.00$	0 980~0 900	0 900	0 75

写真-1 プラスチック 繊維の装置

写真-3 寸法比1:1.3 の貯槽(No.3)

写真-4 寸法比1:1近傍 の貯槽(No.5)

図-3 加振方法の模式図

図を示す.ここで,水深をH,最大波高をΔHとし,また, 加振振幅と入力振動数の計測には,東京測器社製の変位 計 DDP-10A(0.01×10mm)を使用した.振幅は,それぞれ の加振条件において,貯槽から溢流しない程度の振幅(± 0.5mm 程度)を採用した.

2・4 固有振動数の理論値

矩形貯槽のスロッシング n 次モードの固有振動数 f(Hz)の理論値は水深 H(m),重力加速度 g(m/s²),貯槽の 幅 L(m)を用いて式(1)より求める⁹⁾.

本研究では,表-4 に示した貯槽について,固有振動数の理論値付近でスイープ試験を行った.各振動数において,貯槽の数点で加振時の最大波高を観測し,最も波高が高かった振動数を,実験より得られた固有振動数fとした.

本研究では,最大波高が最も高くなり,危険性が最も 高い1次モードで実験を行った.

なお,式(1)より,貯槽の水深H,幅Lが変化すれば固 有振動数の理論値も変化する.そのため,例えば寸法比 1:3の場合においては,図-4に示すように,幅方向(1:3 貯槽)の1次モードと,奥行き方向(3:1貯槽)の2次モー ドの固有振動数の理論値が重なりあう.このような場合 には,液面揺動を注意深く観察した.

図-4 1:3 貯槽における水深-固有振動数の関係

2・5 水深比による違い

図-5 に,貯槽幅(L)が 0.90m の場合の,水深比と固有振 動数の理論値の変化を示す.実験では,水深比(水深 H/貯 槽幅 L)を変化させて加振を行った.式(1)より,貯槽の水 深(H)と貯槽幅(L)を変化させることによって,固有振動 数の理論値も変化する. 図-5 より,H/L がある値以上では,固有振動数がほとん ど変化しなくなることが分かる.そこで本研究では,図-11 中の印を付けた 3 箇所,すなわち,固有振動数が大きく変 化している領域(H/L=0.094,f=0.50Hz),固有振動数がほと んど変化しなくなる領域(H/L=0.54,f=0.90Hz),2 つの領 域の中間部分(H/L=0.20,f=0.70Hz),の3 種の水深比で実 験を行い,

水深比による違いを比較した.

その結果,加振時の最大波高には違いが見られたものの,どの水深比でも同じような液面揺動を示した.従って,以後は H/L=0.094 および H/L=0.20 を中心に論ずる.

3. 実験結果

3・1 固有振動数の沿った液面揺動

表-4のNo.1~4の貯槽を用いた実験結果について述べる.

矩形貯槽は円形貯槽とは異なり,幅方向と奥行き方向 の2つの固有振動数が存在する.ここでは,さらに,矩 形貯槽の入射角θを変化させていくことが,液面揺動に どのように影響するのかを調査した.図-6に,3:1貯槽 を例にとり,幅方向の振動数(0.66Hz)で加振した場合と, 1:3 貯槽の幅方向の振動数(1.60Hz)で加振した場合の模 式図を示す.

幅方向の固有振動数で加振をしながら入射角 θ を変化 させた場合,図-6のように,水深および入射角 θ が同じ でも,入力振動数により,幅方向の液面揺動が支配的と なった.

3・2 入射角を変化させたことによる影響

入射角θを変化させた場合の固有振動数は,θ=0°の 時の固有振動数の理論値周辺にあると推測し,理論値の 前後の値で加振試験を行い,実験値の固有振動数を求め た.また,振動数の計測は,振動台に取り付けた変位計を

用いて,10回振動する時間を5回計測し,その平均から 周期を求め,加振時の入力振動数を算出した.入射角θを 0°~90°まで変化させて行った試験により得られた,各 貯槽の入力振動数-最大波高関係の一例を図-7~図-9に 示す.

図より、 $\theta=0^{\circ}$ におけるスロッシング1次モードの固有 振動数は理論値とほぼ一致した.入射角を変化させた場合 でも、fの変化は $\theta=0^{\circ}$ に対し $0\sim0.02$ Hz であり、大きく変 化はしなかった.また、入射角 θ を変化させるにつれて、 波高は徐々に小さくなった.そして入射角 $\theta=75^{\circ}$ の場合 であっても、波高は小さくなるものの、いずれも幅方向の 固有振動数 f に沿った液面揺動が支配的であった⁶⁾.しか し、 $\theta=90^{\circ}$ になると幅と奥行きの位置が完全に逆転する ため、 $\theta=0^{\circ}$ の振動数では液面揺動が見られなかった.以 上より、矩形貯槽は入射角 θ を変えた場合でも、 $\theta=0^{\circ}$ の 時と固有振動数はほとんど変化しないということが分か った.

なお、図-9 に示す 1:3 貯槽の場合には、1:3 貯槽の1 次モードの振動数の理論値周辺(f=1.60Hz)に、3:1 貯槽 の2次モードの振動数(f=1.56Hz)が重なることにより波 高が一部高くなる結果となった.

3・3 入射角-最大波高の関係

図-10 および図-11 に、水深 0.15m と水深 0.10m のとき の各貯槽の最大波高 Δ H の変化の様子を示す.図-10 は、 入射角が θ =0°の状態から加振し始め、90°まで θ を 徐々に変化させたグラフである.各貯槽は寸法が異なる ため、縦軸は最大波高 Δ Hを貯槽の幅Lで無次元化した. なお、 θ =0°時の Δ H/L が1になるように正規化を行な ってある.図中には参考として余弦曲線(cos θ)を示す.

図-10より,1:1 貯槽は奥行きと幅の寸法が同じである ため,他の矩形貯槽と挙動が異なり,1つの固有振動数し か存在しない.そのため,入射角 θ を変化させた場合で も, Δ H/L が他の貯槽のような変化をせず,液面が対角 方向に揺れることが確認された.

また,図-11より,1:1 貯槽は水深 0.10m の場合,入射 角 θ =45°のときに液面が貯槽の対角方向に大きく揺れ, 0°時と比べて波高が 2 倍以上に高くなった.水深 0.15m の場合には,入射角 θ を 0°から変更していくと,液面が 回転するような現象が発生した.:1以外の寸法比の貯槽

図-10 入射角-正規化をした最大波高の関係 (水深 0.15m)

図-11 入射角-正規化をした最大波高の関係 (水深 0.10m)

では、水深 0.10m および 0.15m のどちらにおいても、入 射角 $\theta \geq 0^\circ$ から大きくしていくことにより、 Δ H/L は余 弦曲線に沿うような形で減少していく.これは、入射角 $\theta \geq \infty$ えた場合、幅方向の液面揺動と加振の方向が同じ 方向ではないため、加振時の入力エネルギーが余弦成分 のみとなるためと考えられる.なお、D/L=1.0 近傍の詳 細な検討は次節で行う.

3・4 寸法比1:1 近傍におけるスロッシング現象

これまでの実験結果より,貯槽の奥行きと幅の寸法が 一致している寸法比 1:1 の場合においては,入射角 θ を 変化させると,対角方向(特に θ =45°のとき)に大きな液 面揺動が発生することが分かった.この原因としては,幅 と奥行き方向の固有振動数が一致しているため,それぞ れの方向に液面揺動が発生しようとした結果,波が合成 されて液面揺動が大きくなったと推測される.

そこで、,寸法比1:1の状態から、幅:Lを一定とし、奥行き:Dだけを幅:Lに対して10%以内で変化させて加振を行った場合の液面揺動について調査した.つまり、幅と奥行きの固有振動数をわずかに異なるものにした場合において、,寸法比が液面揺動に与える影響を調べた.なお、寸法比1:1 近傍における加振実験では、,表-4 に示した貯槽のNo.5を使用して実験を行った.

3・4・1 入力振動数-最大波高の関係

先に行った実験より,入射角 θ を変化させても,固有振動数の理論値はほぼ変化しないということが分かっている. そのため,貯槽の寸法比 1:1 近傍における実験でも, $\theta = 0^{\circ}$ 時の理論値周辺で, $\theta \in 90^{\circ}$ まで変化させ,各入 射角で加振試験を行った.結果の一例を,図-12 および図 -13 に示す.横軸と縦軸には,それぞれ,入力振動数と最 大波高 Δ H をとってある.ここで,D/L の値が 1.00 の場合 には,奥行き:D と幅:L の寸法が同一ということになり, 値が 1.00 より大きいと奥行き:D が幅:L に対して長くな り,値が 1.00 より小さくなると奥行き:D が幅:L に対して 固有振動数

0.51

0.51

0.5

の理論値

図-13 H/L=0.094 D/L=0.92 貯槽の 入力振動数-△Hの関係

0.46

短くなる.

図-12 および図-13 を見ると, 3.2 節で述べた実験と同様, 入射角θを変化させても固有振動数の理論値周辺で 最大波高が最も高く, 理論値とほぼ一致する結果となった.

また,図-13を見ると,D/L=0.92の場合では,幅方向と 奥行き方向の固有振動数が0.04Hz 異なる.そのような場 合には,異なる2つの振動数において最大波高が高くな る明確な2つのピークが見られた.

3 • 4 • 2 寸法比 1:1 貯槽における 入射角 - 最大波高の関係

図-14 に水深比 H/L=0.094, 図-15 に水深比 H/L=0.20 の場合の各寸法比 D/L における最大波高 Δ H の変化の様 子を示す.縦軸は理論値付近の最大波高 Δ H を水深 H で 無次元化し,さらに $\theta = 0^{\circ}$ 時の Δ H/H が 1 となるように 正規化した. 横軸は入射角での変化を見るため,入射角 θ とした.また,図中には参考として余弦曲線(cos)を 示す.

図-14 入射角-正規化した ΔH/Hの関係 (H/L=0.094)

図から、寸法比 D/L が 1.00 および 0.99 の場合は、入 射角 $\theta \in 0^{\circ}$ から 90° まで変えていくと、0° 時に比べて 最大波高が 2 倍程度になっている. 一方で、寸法比 D/L を約 4%以上変化させたケース(D/L \leq 0.96 および D/L \geq 1.04)では、 Δ H/H は 1 を大きく上回ることはなかった.

また,このケースの特徴として,入射角 θ が0°~30° までは Δ H/H=1 付近の値であるが,30°~60°の間で波 高が急激に減少する傾向が見られた.

ところで、実際の地震動はさまざまな振動数を含んで いるため、理論上の固有振動数とは異なる振動数で加振 されることは十分に考えられる. 言い換えると、図-12 に示すように、理論上の固有振動数とは異なる振動数に おいて波高が最大となる場合があり、液面揺動が最大と なる振動数で加振される可能性がある.今回の実験では、 表-5 に示すように、寸法比を 1.09~0.92 まで変化させ ることにより、固有振動数は最大で 0.04Hz の差が生じた. そこで、ここでは固有振動数差と最大波高の変化に着目 し整理する. 図-16 および図-17 には、各固有振動数差 (Δ f)における各入射角での最大波高をプロットした.

図より,最大波高の変化は幅と奥行きの固有振動数差

3

2

1.5

0.5

(u)²

ДΗ

最大波高

2

1.5

0.5

0 44

60

75

0.45

 0^{2}

0.48

0.49

入力振動数 (Hz)

幅方向の 固有振動数

の理論値

理論値

奥行き方向の

固有振動数の

0.47 0.48 0.49

入力振動数 (Hz)

図-12 H/L=0.094 D/L=1.00 貯槽の

入力振動数−△Hの関係

0.5

2.5

(cm)

ЧΔ

最大波高

表-5 寸法比の違いによる固有振動数差△f

寸法比:奥行き/幅 (D/L)	幅:L(幅:D) (m)	奥行き:D (奥行き:L)(m)	固有振動数 の差⊿f(Hz)
1.09(0.92)	0.90	0.980	0.04
1.04(0.96)	0.90	0.938	0.02
1.02(0.98)	0.90	0.918	0.01
1.01(0.99)	0.90	0.910	0.005
1.00	0.90	0.900	0

図-16 △fの入射角-最大波高の関係(H/L=0.094)

図-17 Δfの入射角-最大波高の関係(H/L=0.20)

 Δf が 0.01 以内 (D/L が 2%以内) の場合は, 入射角 θ =45° を中心に, 0°時よりも波高が高くなる可能性があること が分かる.しかし, 固有振動数差 Δf が 0.01 を超えると, 入射角を変えても波高は著しく高くならず, 30°~60° の間では 0°のときと比べると,低い波高を示す場合も ある.

以上より,寸法比 D/L が 0.98~1.02 の場合, θ が 30° ~60°の間で, ΔH/H が 2 倍近くとなる可能性があるこ とが分かった.

4. 波高抑制装置を設置した実験結果

本研究では、矩形貯槽のスロッシング現象の性質を把 握すること、および、抑制方法を検討することが目的であ る.矩形貯槽のスロッシング現象の挙動は、入射角や寸 法比に大きく左右されることが判明し,条件によっては 波高がθ=0°の場合と比較して2倍程度となることも分 かった.実際の矩形貯槽では,ほぼ満水近く貯水されてい ることがほとんどで,地震により固有周期に近い振動数 で加振されると,溢流,または,貯槽の天井を破壊する危 険性が非常に高いと言える.

そこでここでは、これまでに得た矩形貯槽のスロッシ ング現象の結果を活かして、スロッシング現象の抑制方 法を検討した.具体的には、先に述べたように貯槽の内壁 に波高抑制効果がある装置を取り付け、その効果を検討 した.実験パターンは表-3に示す通りで、貯槽は、表-4の No.3(1:1.3 貯槽)を使用した.既存の貯槽に取り付ける ことを想定し、設置条件の検討も行う.

4 · 1 固有振動数の変化

式(1)より求めた固有振動数の理論値付近で加振試験 を行った.その結果の一例を図-18 に示す.横軸には入 力振動数,縦軸には最大波高ΔH をとり,図中には装置 を設けないときの波高(non)も表示する.

図-18 から分かるように,波高抑制装置を取り付ける ことによって,波高が最大 1/10 程度まで大きく抑えられ ていることが分かった.また,卓越振動数が高周波へ移 動していることが分かる.

卓越振動数が高くなった原因としては、貯槽の内壁に 装置を設置したことによって、貯槽の幅:Lが狭まったこ とが考えられる.式(1)には、貯槽の幅:Lが使用されてお り、Lの値が小さくなる、つまり、貯槽の幅が狭まると、固 有振動数の理論値は高い値を示すようになる.狭まった 貯槽の幅:Lを式(1)に代入し、理論値の算出を行うと、 f=1.13Hz付近となり、卓越振動数が1.09~1.13Hzとなっ た実験結果とおおむね一致する.すなわち、理論値では貯 槽の幅:Lが支配的なパラメータとなっているので、固有 周期が変化したのではないかと推測できる.

4・2 浸漬比による効果の違い

貯槽の水深が深く,貯槽の底まで装置を取り付けられ ない場合を考慮し,浸漬比を 0.0, 0.2, 0.4, 0.6, 1.0 と変化させ実験を行った.図-19 に設置箇所ごとの最大 波高を示す.ここで,装置を付けていない場合の最大 高を Δ H,装置を付けた場合の最大波高を Δ h と定義する. そして装置を取り付けた場合の最大波高 Δ h を,装置を 付けていない場合の最大波高 Δ H で除したものを Δ h/ Δ H として表し,無次元化を行い縦軸にプロットした.つ まり,装置がない場合は Δ h/ Δ H が 100%となる.また, 横軸は浸漬比とする.

図-19から設置箇所,装置長によって差はあるが,装

置を設置することで,装置がない状態と比べ,最大波高 は1/2から1/10程度に抑えられている.また,例えば図 -19(c)に示すように,全体的な傾向として,設置箇所, 装置長に関係なく,浸漬比が0.2以上であれば,0.0の 場合と比べて,波高抑制効果が大きいことが分かった. さらに,0.4以上であれば,浸漬比をこれ以上大きくし ても,波高抑制効果はほとんど変化しないことが分かっ た.

したがって、装置が内溶液にわずかでも浸かっている 状態であれば、波高抑制効果を十分に得られることが分 かった.内溶液に装置が沈んでいない浸漬比 0.0 の場合 でも、装置を適切な位置、今回の場合であれば、4 面、 加振軸直交 2 面(直交型)に配置することにより、装置を 取り付けていない状態の最大波高と比べ、4 割程度まで 抑制できることが分かった.さらに、加振軸平行 2 面(平 行型)に配置した場合でも、装置長が 100%であれば、装 置を取り付けていない状態の最大波高と比べて 1/3 程度 に抑制することができ、十分に効果があることが分かっ た.

4・3 装置長による効果の違い

装置を全面に設置できない場合を考慮し,装置長を 100%,50%,20%と変化させ実験を行った.結果を図-20 に示す.

図-20 は図-19 と同様に,縦軸には無次元化した最大波 高Δh/ΔH を示した. 横軸は装置長とする. また,浸漬 比 0.2, 0.4, 0.6 では結果に有意な差が見られなかった ため,浸漬比は 0.0, 0.2, 1.0 の場合のみ記載する.

図-20 から,全体的な傾向としては,装置が長くなるに つれて波高抑制効果が大きくなることが分かった.また, 設置パターンが平行型かつ浸漬比が 0.0 の場合を除き, 装置長が 20%以上であれば,装置を取り付けていない状 態の最大波高と比べ,最低でも4割程度まで抑制できる ことが分かった.

以上より,装置が奥行き:Dに対して 20%という長さで も,適切な位置に装置を取り付けることにより,十分に 波高を抑えられることが分かった(図-20(c)参照).

4・4 設置面積による評価

前節までの検討結果より浸漬比,装置長,設置箇所の パラメータから,内溶液に浸かっている装置の面積の比 を用いて,スロッシング現象抑制効果について評価する.

1 面あたり装置が内溶液に浸かっている面積の比と波 高の関係を図-21 に示す.縦軸には装置を付けた場合の 最大波高Δhを,装置がない場合の最大波高ΔHで除した 値をとり,横軸には内壁1面の面積を装置長に浸漬比を

乗じた面積の比とする. なお, このときの面積は 100%の 場合 0.135m²となり, 設置位置はできる限り水面に近い 位置とする.また,全データから最小二乗法を用いて近 似曲線を求めたものを図に実線で示す.しかし,データ にはばらつきが多く見られたため,標準偏差分だけ上方 ヘシフトした近似曲線を破線で示す.

図の近似曲線から分かるように、装置が 1 面に対して 10%程度浸かっていれば、設置箇所に関わらず、波高は半 分程度に抑えられることができ、30%浸かっている状態で あれば、波高は3割程度以下に抑制することが可能である. また、1 面あたりの浸かっている面積が 40%以上では、面 積を大きくしても、抑制効果はほとんど変わらないことが 分かった.

5. 結論

本研究では、矩形貯槽のスロッシング現象の挙動把握, ならびに矩形貯槽の内壁部分に波高を抑制する装置を取 り付け,スロッシング現象発生時の波高がどのように変 化するかを調査し,その抑制効果について検討した.本 研究の結果を下に示す.

- (1) 幅と奥行きで寸法が異なる矩形貯槽は,幅方向と奥 行き方向で異なる固有振動数を持つため,それぞれ の固有振動数で加振した際には,入射角を変更して も,入射角に関係なく,固有振動数に沿った動きと なる.
- (2) 寸法比が1:3という特異な寸法の矩形貯槽では,幅 方向の1次モード固有振動数と,奥行き方向の2次 モード固有振動数が重なり,固有振動数付近では液 面揺動に変化が生じた
- (3) 寸法比が1:1の矩形貯槽では,幅方向と奥行き方向の固有振動数が一致しており,入射角が45°付近においては幅方向と奥行き方向,双方に液面揺動が発生しようとして波が合成され,対角方向に波高が大きく出る結果となった.
- (4) 1:1の寸法比の貯槽を,幅,奥行きのどちらかの寸法 を 4%以上変化させることにより、入射角を変更し ても,最大波高は著しく高くなるケースは見られな

かった.

- (5) 矩形貯槽の内壁に,波高抑制効果のある装置を取り 付けることによって,装置を取り付けていない状態 の最大波高と比較し,最大で1/10程度に波高を抑 制することができた.
- (6) 近似曲線より,装置が1面あたり10%程度の設置面積でも,波高を半分以下にすることができる.また,波高を1/5程度以下に抑制したいのであれば,1面あたりの装置の面積を30%以上設置することが望ましい.

謝辞:本研究は科学研究費(基盤研究 (C) 22560486 代表: 平野廣和)の研究助成により行った.また,実験に際して は,愛知工業大学振動実験室により行った.ここに感謝 の意を表する.

参考文献

- 1) 堀郁夫,川端鋭憲:地震による石油タンク火災の 技術的考察と社会問題,社会技術研究論文集 Vol. 2, pp414-424, 2004.10
- 山田實:平成15年十勝沖地震による石油タンクの損傷について,予防時報219号,2004年10月
- 豊田幸宏,田中伸和:平成19年新潟県中越沖 地震時に発生した使用済燃料貯蔵プールの溢流 を伴うスロッシング挙動評価,電力中央研究所 2008年度研究年報,pp94-95,2009.6

- 4) 井田剛史,平野廣和,鈴木森晶,坂東譲,佐藤 尚次:浮屋根式貯蔵タンクのスロッシング減衰 対策- φ0.6m タンクモデルの振動実験,土木学 会論文集 A, Vol. 63 (2007), No. 1, pp. 242-251, 2007.3
- 5) 池田達哉,平野廣和,井田剛史,佐藤尚次:矩
 形断面容器におけるスロッシング対策に関する
 一提案,土木学会第64回年次学術講演会,
 I-269, pp537-538,平成21年9月
- 高山知司:振動外力を受けるタンク内発生波の 非定常解について,港湾技術研究所報告,第15
 巻,第2号,1976年6月
- 7) 則竹一輝,鈴木森晶,田中直貴,青木徹彦:加振角度を変えた矩形型貯槽の寸法比と水深比による液面揺動に関する研究,土木学会第66回年次学術講演会,I-668, pp1335-1336,平成23年9月
- 8) 則竹一輝,鈴木森晶,奥野祐朗,奥村哲夫:矩 形貯槽のスロッシング現象抑制方法に関する実 験的研究,平成23年度土木学会中部支部研究発 表会,I-6,pp11-12,平成24年3月
- 酒井理哉,東貞成,佐藤清隆,田中伸和:溢流 を伴う矩形水槽の非線形スロッシング評価,構 造工学論文集, Vol. 53A, 2007.3

(受理 平成 24 年 3 月 19 日)